Contractile function, sarcolemma integrity, and the loss of dystrophin after skeletal muscle eccentric contraction-induced injury.
نویسندگان
چکیده
The purpose of this study was to evaluate the integrity of the muscle membrane and its associated cytoskeleton after a contraction-induced injury. A single eccentric contraction was performed in vivo on the tibialis anterior (TA) of male Sprague-Dawley rats at 900 degrees /s throughout a 90 degrees -arc of motion. Maximal tetanic tension (Po) of the TAs was assessed immediately and at 3, 7, and 21 days after the injury. To evaluate sarcolemmal integrity, we used an Evans blue dye (EBD) assay, and to assess structural changes, we used immunofluorescent labeling with antibodies against contractile (myosin, actin), cytoskeletal (alpha-actinin, desmin, dystrophin, beta-spectrin), integral membrane (alpha- and beta-dystroglycan, sarcoglycan), and extracellular (laminin, fibronectin) proteins. Immediately after injury, P0 was significantly reduced to 4.23 +/- 0.22 N, compared with 8.24 +/- 1.34 N in noninjured controls, and EBD was detected intracellularly in 54 +/- 22% of fibers from the injured TA, compared with 0% in noninjured controls. We found a significant association between EBD-positive fibers and the loss of complete dystrophin labeling. The loss of dystrophin was notable because organization of other components of the subsarcolemmal cytoskeleton was affected minimally (beta-spectrin) or not at all (alpha- and beta-dystroglycan). Labeling with specific antibodies indicated that dystrophin's COOH terminus was selectively more affected than its rod domain. Twenty-one days after injury, contractile properties were normal, fibers did not contain EBD, and dystrophin organization and protein level returned to normal. These data indicate the selective vulnerability of dystrophin after a single eccentric contraction-induced injury and suggest a critical role of dystrophin in force transduction.
منابع مشابه
Sarcolemmal targeting of nNOSμ improves contractile function of mdx muscle.
Nitric oxide (NO) is a key regulator of skeletal muscle function and metabolism, including vasoregulation, mitochondrial function, glucose uptake, fatigue and excitation-contraction coupling. The main generator of NO in skeletal muscle is the muscle-specific form of neuronal nitric oxide synthase (nNOSμ) produced by the NOS1 gene. Skeletal muscle nNOSμ is predominantly localized at the sarcolem...
متن کاملتاثیر دما بر کاهش قدرت عضلانی ایزومتریک متعاقب تمرینات اکسنتریک در عضله گاستروکنمیوس داخلی ایزوله پرفیوز شده موش صحرائی
Background: The typical features of eccentric exercise-induced muscle damage are delayed-onset muscle soreness (DOMS) and prolonged loss of muscle strength. It has been shown that passive warmth is effective in reducing muscle injury. Due to the interaction of different systems in vivo, we used isolated perfused medial gastrocnemius skeletal muscle to study the direct effect of temperature on t...
متن کاملDystrophin and utrophin expression require sarcospan: loss of α7 integrin exacerbates a newly discovered muscle phenotype in sarcospan-null mice.
Sarcospan (SSPN) is a core component of the major adhesion complexes in skeletal muscle, the dystrophin- and utrophin (Utr)-glycoprotein complexes (DGC and UGC). We performed a rigorous analysis of SSPN-null mice and discovered that loss of SSPN decreased DGC and UGC abundance, leading to impaired laminin-binding activity and susceptibility to eccentric contraction-induced injury in skeletal mu...
متن کاملExpression of Dp260 in muscle tethers the actin cytoskeleton to the dystrophin-glycoprotein complex and partially prevents dystrophy.
Dystrophin forms a mechanical link between the actin cytoskeleton and the extracellular matrix in muscle that helps maintain sarcolemmal integrity. Two regions of dystrophin have been shown to bind actin: the N-terminal domain and rod domain repeats 11-17. To better understand the roles of these two domains and whether the rod domain actin-binding domain alone can support a mechanically functio...
متن کاملContractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions.
The time course of muscle contractile and cellular properties was studied in rabbit ankle flexor muscles after injury produced by eccentric exercise. Cyclic eccentric exercise was produced by increasing the tibiotarsal angle of the rabbit while activating the peroneal nerve by use of transcutaneous electrodes. Muscle properties were measured 1, 2, 3, 7, 14, and 28 days after exercise to define ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 286 2 شماره
صفحات -
تاریخ انتشار 2004